

Dr Giuliano Grassi Secretary General

Supporting Biomass Sector at all Levels

EUBIA - The European Biomass Industry Association

Researching

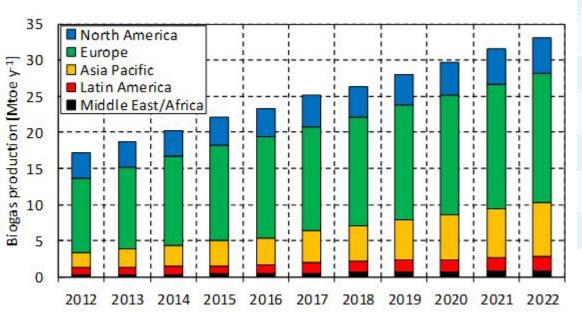
for

Bioeconomy

EUBREN - The European Biomass Research Network

General Context

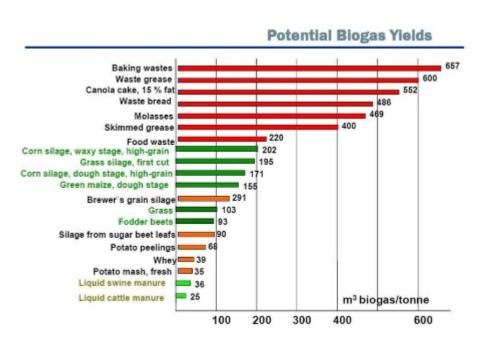
The actual world production of Biogas is considerable and estimated around 23 MTOE/year with max. potential of about 800 MTOE/y.


- A significative R&D Dem. Effort has been carried out successfully especially in the last 3 decades
- At the beginning, the major interest, for industrial countries, was due to the "environmental impact", while for developing countries, was the Energy supply for cooking/heating
- At present the world-wide commercial Biogas activity has reached an high level of market penetration (especially at small-mediium scale) in different Energy sectors: Bioelectricity- Bioheat-Biofuel for transport
- Several Financial support schemes are available in many countries to promotoe the production and efficient use of biogas from waste/residues for large industrial projects and small rural projects offering supplementary income to farmers
- Biogas activity soon may become attractive also to private investors for business in new emerging sectors.

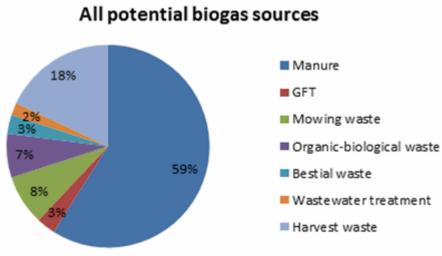
World Biogas Situation: Present & potential

Actual Production: ~ 23 MTOE/y

Potential: ~ 800 MTOE/y


Typical composition of biogas*					
Component	% Volume				
CH ₄	50-75				
CO ₂	25-50				
N_2	0-10				
H_2	0-1				
H_2S	0-3				
O_2	0-2				

*Variability depends on feedstock


Source: http://www.scielo.br

World Biogas Situation: Present & potential

Source: http://www.renewableenergyworld.com

Source: http://energy.sia-partners.com and Biogas-e

World Biogas Situation: Present & potential

Type of resource	EU 27 [4] PJ	EU 27 [4] Billion m³ CH4	China [8,9] PJ	China (8,9) Billion m ³ CH4	World [7] PJ	World [7] Billion m ² CH4
Manure	738	20.5	2591	72		
Residues (straw from grain, corn, rice, landscape cleaning)	407	11.3	1152	32		
Energy crops	978	27,2	1799	50		
Total from agriculture	2123	59	5542	154	22674	630
Urban waste (organic fraction of MSW)	360	10	2591	72		
Agro-industry waste (organic fraction)	108	3	1152	32	- 00	
Sewage sludge	216	6	576	16	- 22	
Total waste, billion m ³ CH ₄	684	19	4319	120	13316	370
Total (agriculture and waste)	2807	78	9861	274	35990	1000
Total in EJ	2.8		9.9		35,9	

Source:

http://biomassmagazine.com and World Bioenergy Association

1 EJ = 23,88 MTOE

For comparison the Total Bioenergy Contribution (World):

- Present: 13% of energy consumption (1,5 Billion TOE/y)
- Potential: 5,6 Billion TOE/y (for the year 2050)

with actual total primary world Energy consumption: ~ 12 Bill TOE/y

Increasing interest of private investors of Biogas Activities

There are 3 new emerging sectors of Business for private investors (enclosing Major investors) involving Biogas Activities:

- **1. New smart-urban-district, smart-city Business** (MSW-sludges-Water re cycling & Purification-Urban vegetation residues, etc) requiring important infrastructures (hundreds of M\$) and A.D. processing.
- 2. Bio-refineries enclosing crops-plantation (1,000-50,000 ha) involving coprocessing up to 5÷10 million tons of fresh-biomass per year with a large volume of solid-liquid wastes to be submitted to anaerobic digestion process. Investment for large biorefineries: 0,5-1 Billion \$.

Increasing interest of private investors of Biogas Activities

3. Production of Biofertilisers replacing Synthetic Fertilisers (major interest for N) for Bio-food production and for intensive future industrial crops plantation.

Motivations

- Biofertilisers show better-quality, higher productivity, higher resistance (less pesticides) products.
- Intensive utilisation of Biofertilisers in large-scale annual Energy/industrial plantations (sweet-sorghum-miscanthus etc could reduce-elimininate (?) crops rotation with a large impact of Financial needs for land use. From very preliminary assessments it seems that for sweet sorghum plantations the AD sludge of 15% of residues (and of the processing wastes) could balance the N_2 output loss.
- Biofertilisers coproduction in Biorefineries seems viable and competitive with synthetic fertiliser.
- Small scale (decentralised) production is feasible. Investment are reasonable.
 Thre is a need of the establishment of a a normative-legal frame.

Requirements for major Private Investors

Beyond the usual required environmental sustainability of the activity (water, wastes, emissions), the long-term operation (20-30 y) the respect of biodiversità for biomass plantations, the most important basic requirements for private investors are:

- The economic viability (reasonable R.O.I. ~ 10%);
- Low financial risk (covered by insurance);
- Adoption of sound-consolidated processing technologies;
- Flexibility in processing different types of feedstocks;
- Use of modular commercial plants for scale-up of repeated investments (cost-reduction);
- Integration of Biogas A.D. process with other co-processing technologies for simultaneous productin of Bioenergy-Biochemicals-Biomaterials.

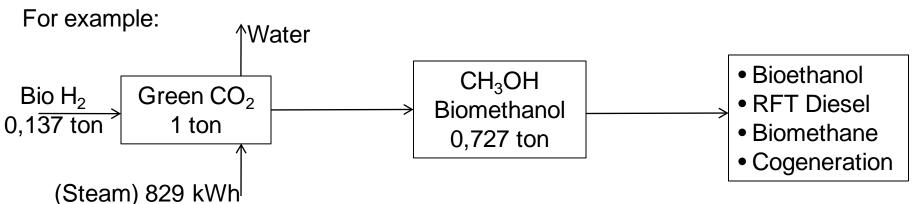
Examples of Envisaged supply of Biogas co-products

Some potential large volumen co-products:

- Bio-electricity/Bioheat/Biocooling/Biofreezing
- Clean Biogas for tran sport
- Biomethane
- Biogas eriched with Bio-H₂
- Biogas eriched with Bio-syn-Gas (very large volume applications)
- Biomethanol production (small-scale)

•

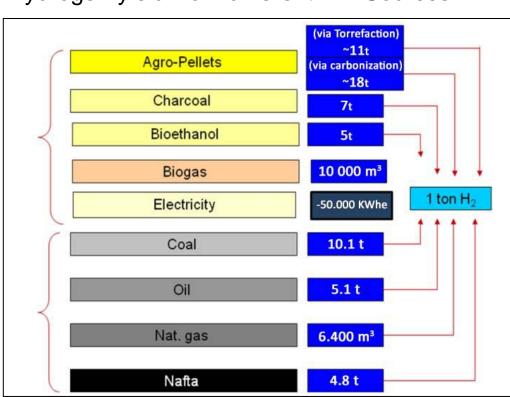
- N₂ Biofertilisers
- Desalinated sea-water
- Liquid CO₂ (purified)
- Bioceramics


Synergy of Biogas with Bio-H₂

- Hydrogen is not available in nature (is not an energy source) but an energy vector.
- Hydrogen is an expensive gas with a total world production of ~ 50 million t/y, most utilised for petroleum-refining (10.000-50.000 t/y plants), for N₂-fertilisers and for methanol production.
- Bio-H₂ could be produced commercially from biomass by a less efficient 4-steps conversion process (see following slide) at relative high cost: 2,000 €/t (min.).
- Advanced gasification under intensive R&D Dem. Effort should improve the efficiency and the Bio-H₂ prod.cost.
- A relative simple way is to use the "Electrolysis of water" process (75-80% efficiency) with the supply of Renewable Electricity. Unfortunately the H₂ high cost is due to the high capital cost, complicated for upscaling (too numerous cells).
- 78% of H₂ is obtained from natural gas, 18% from coal, 4% by electrolysis of water. With considerable amount of CO₂ emissions (7 tCO₂/tH₂ and total loss of 45% for natural gas).

Synergy of Biogas with Bio-H₂

- Simultaneous Electrolysis of H₂O and CO₂ (from biogas) will produce on one electrode (anode) syngas (CO+H₂) and on the other (catode) oxygen (it can be used for oxygen combustion).
- Green CO₂ (recovered from biogas-bioethanol-biomass combustion) could be upgraded to several Biofuels with Bio-H₂:



At present the world Methanol market is ~ 100 Mton/y.

Bio-H₂ Production

Hydrogen yield from different En. Sources

Bio-H₂ from solid biomass appears the most attractive:

- Agro-pellets: ~ 2.200 \$/tH₂
- Wind (5 c%kWh): ~ 4.000 %tH₂
- PV (30 c\$/kWh): 24.000 \$/tH₂

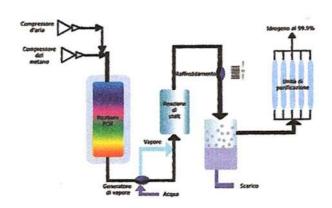
Bio-H₂ Production (via steam reforming of charcoal pellets)

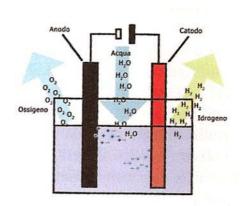
1700\$/t

Advanced bioenergy technologies **BIO HYDROGEN ROUTES** OF MAJOR INTEREST **Bio-electricity Bio-Pellets Bioethanol** ~30-40% (Solid biomass) **Electrolysis Cathalytic** Carbonisation ~80% **Process** • n ~ 24% • n ~ 70% (with en. Inputs 240KgH₂/t ETOH) • Cost = 3.000\$/t • Cost = ??? \$/t Commercial Pilot stage Steam-Reforming Membrane H₂ CO shifting + of Charcoal pellets Coshifting **Separation PSA Purification** to BioSYN-GAS H₂: 98% CO₂ $H_2 = 99,99\%$ $H_2 = 99\%$

First Sino-EU 2016 Bio-Natural Gas Summit, 4 November 2016

1800 \$/t


Cost: 2000\$/t


Bio-H₂ Production

PRESENT COMMERCIAL PRODUCTION OF H₂

Steam reforming of natural gas or coal

electrolysis process

The cost of small electrolysis plant (capacity of 1 Nm³/h) is high; 50,000 € + 12,000 € for 350 bar compressor.

Purity of H₂ is very high: 99,99%.

Conclusion

- Biogas is providing at world-level a significative renewable energy contribution of 25 MTOE/year.
- Biogas is of considerable interest for rural development (supplementary, diversified income) and for reduction of the impact on the environment.
- Co-products of major interest are (at present):
 - Bio-electricity
 - Bio-heat
 - Biofertilisers
- In future expansion of biogas market could derive by the co-utilisation biogasbiohydrogen (low cost).

Thank you for your attention!

Giuliano Grassi

EUBIA Secretary General

giuliano.grassi@eubia.org

www.eubia.org