

生物天然气标准及燃气工程探讨

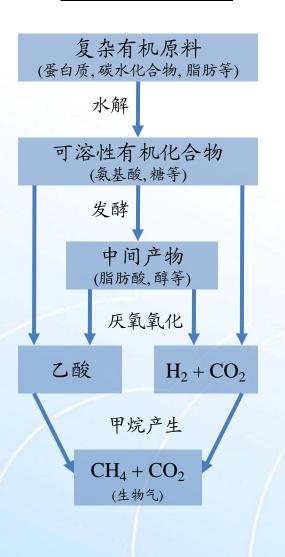
中欧生物天然气高峰论坛

周红军教授 新能源研究院 中国石油大学(北京)

Prof. Dr. Hongjun Zhou
Institute of New Energy (INE)
China University of Petroleum, Beijing (CUPB)

一、有关标准与导则

——生物天然气产品质量标准


- 标准编制的目的
 - 满足用户对生物天然气产品质量的要求
 - 促进生物天然气行业发展

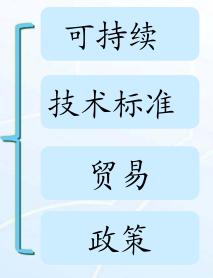
生物气的产生过程

垃圾场填埋气/厌氧发酵生物气/天然气比较

项目	单位	垃圾场填埋气	厌氧发酵生物气	天然气
发热值(低)	MJ/Nm ³	16	23	40
	kWh/Nm^3	4.4	6.5	11
	MJ/kg	12.3	20.2	48
密度	kg/Nm ³	1.3	1.2	0.83
沃泊指数(高)	MJ/Nm ³	18	27	55
甲烷值		>130	>135	72
甲烷	vol-%	45	65	89
甲烷范围	vol-%	35-65	60-70	
长链碳氢化合 物	vol-%	0	0	10
氢气	vol-%	0-3	0	0
一氧化碳	vol-%	0	0	0
二氧化碳	vol-%	40	35	0.9
二氧化碳范围	vol-%	15-50	30-40	
氮气	vol-%	15	0.2	0.3
氮气范围	vol-%	5-40		
氧气	vol-%	1	0	0
氧气范围	vol-%	0-5		
硫化氢	ppm	<100	< 500	3
硫化氢范围	ppm	0-100	0-4000	1-8
氨	ppm	5	100	₀ 4
总氯(以Cl·计)	mg/Nm^3	20-200	0-5	0

- 欧洲生物天然气的发展
 - The BIOMASTER Project:

Biomethane Use in Transport


- 奥地利,意大利,波兰, 瑞典,英国
- 2011.05 2014.04
- 投资: 170万欧元

- 欧洲生物天然气的发展
 - The GreenGasGrids Project:
 - 2011.06 2014.05
 - 研究内容:

Co-funded by the Intelligent Energy Europe Programme of the European Union

ĢREEN

GRIDS

Summary of standards for biomethane. Source: Svenskt Gastekniskt Center, 2011.

		· · · · · · · · · · · · · · · · · · ·						,	
成分		奥地利	法国	比利时	捷克	德国	荷兰	瑞典	瑞士
CH ₄		≥ 96	≥ 86	≥ 85	≥ 95		≥ 85	≥ 97 1	≥96
CO ₂		≤ 3	≤ 2,5	≤ 2,5	≤ 5	≤ 6 (dry)	≤ 6	≤3 ²	≤ 6
O ₂	% (vol/mol)	≤ 0,5	≤ 0,01		≤0,5	≤ 0,5 (wet), 3 (dry)	≤ 0,5	≤1	≤ 0,5
H ₂		≤ 4	≤6	≤ 0,1		≤5	≤ 12	≤ 0,5 ³	≤ 4
СО			≤ 2	≤ 0,2			≤1		
总硫		≤ 10	≤ 30	≤ 30	≤ 30	≤ 30	≤ 45	≤ 23	≤ 30
H ₂ S (+COS in Fr., Be)		≤ 5	≤5	≤ 5	≤7	≤5	≤ 5	≤ 10 ³	≤5
硫醇		≤ 6	≤6	≤ 6	≤ 5	≤ 15	≤ 10		≤ 5 ppmV
卤素化合物		0	≤ 1 (CI) ≤ 10 (F)	≤ 1 (CI) ≤ 10 (F)	≤ 1,5 (F+CI)	0	≤ 50/25 (CI/F)		≤1
重金属	mg/Nm ³		≤ 1 (µg, Hg)	≤ 1 (µg, Hg)		≤5			≤5
硅氧烷		≤ 10 ⁴			≤ 6 (Si)		≤ 5 ppm = 6,2 (Si)		
氨		None	≤3	≤ 3	None		≤ 3	≤ 20	≤ 20
H ₂ O				≤ 110				≤ 32 ⁵	
水露点	°C	≤ -8, 40 bar	≤ -5, P _{max}		≤ -10	Soiltemp.	≤ -10, 8bar	≤ t _{min} -5	Prevent conden- sation
臭味添加剂		Demands prior to consump- tion	15 – 40 mg THT/m ³			Demands prior to consump- tion	> 10, 18 - 40 mg THT/m ³	Demands prior to consump- tion	15 – 25 mg THT/m ³
颗粒物		Techn. Free	Techn. Free		No particles	No particle	Techn. Free	≤1 μm	

• 我国生物天然气的现状

天然气技术指标[1]

项目		一类	二类	三类
高位发热量 ^a /(MJ/m³)	\geq	36.0	31.4	31.4
总硫 (以硫计) ^a /(mg/m ³)	\leq	60	200	350
硫化氢 ^a /(mg/m ³)	\leq	6	20	350
二氧化碳y,%	\leq	2.0	3.0	_

水露点 b,c/℃

在交接点压力下,水露点应比输送条件下最低环境温度低5℃。

- a本标准中气体体积的标准参比条件是 101.325 kPa, 20 ℃。
- b在输送条件下,当管道管顶埋地温度为0℃时,水露点应不高于-5℃。
- c进入输气管道的天然气,水露点的压力应是最高输送压力。

来源: GB 17820-2012 天然气

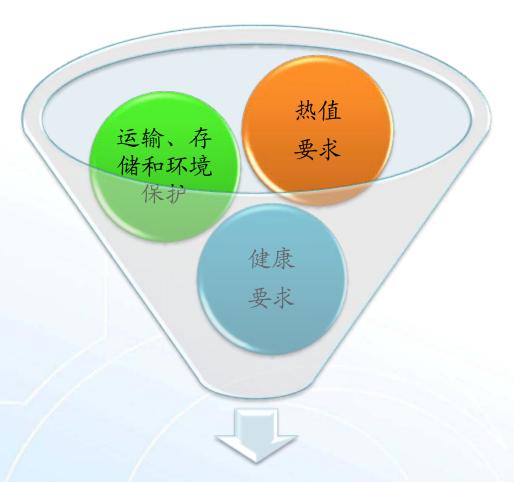

GB 18047 -2000

表 1 压缩天然气的技术指标

项 目	技 术 指 标				
高位发热量,MJ/m³	>31.4				
总硫(以硫计),mg/m³	≪200				
硫化氢,mg/m³	€15				
二氧化碳 🌠 😋 2, %	≪3. 0				
氧气 yo2,%	≪0.5				
水露点,℃	在汽车驾驶的特定地理区域内,在最高操作压力下,水露点不应高于一13℃;当最低气温低于一8℃,水露点应比最低气温低5℃				
注:本标准中气体体积的标准参比条件是 101.325 kPa,20℃					

生物天然气产品质量标准

一、有关标准与导则

——沼气提纯后进入天然气管网接网标准

UDC

中华人民共和国国家标准

P

GB/T 51063-2014

大中型沼气工程技术规范

Technical code for large and medium-scale biogas engineering

2014-12-02 发布

2015-08-01 实施

中华人民共和国住房和城乡建设部 联合发布中华人民共和国国家质量监督检验检疫总局

4.4 沼气净化

4.4.1 厌氧消化器产生的沼气应进行脱硫、脱水净化处理。净 化工艺的选择应根据沼气的不同用途、处理量、沼气质量指标, 并结合当地环境温度等因素,经技术经济比较后确定。

16

• 沼气提纯的关键关键技术及难点:

- 脱硫净化——高 H_2S 沼气纯化有待突破 $H_2S > 3\%$
- 脱氧——沼气中的氧增加纯化难度和安全风险
- 脱二氧化碳

- 沼气脱硫:
 - 硫化氢
 - 羰基硫
 - 硫醇
 - 其他硫化物

- 沼气脱氧:
 - 氢气氧化

$$2H_2+O_2 \rightarrow 2H_2O$$

- 甲烷氧化

$$CH_4+2O_2 \rightarrow CO_2+2H_2O$$

• 沼气脱碳

指标	PSA变压吸附	WW压力水洗	Genosorb 选择分	MEA单乙醇胺	DEA二乙醇胺
			离(有机化学溶剂)	液洗涤分离	液洗涤分离
预处理(S, H ₂ O)	Yes	No	No	Yes	Yes
操作弹性	± 10%	50-100%	50-100%	50-100%	50-100%
甲烷损失	2-5%	< 1%	2-4%	< 0.1%	< 0.1%
甲烷收率	> 96%	> 97%	> 96%	> 99%	> 99%
操作压力,bar	4-7	4-7	4-7	常压	常压
电耗(kWh/Nm³	0.25	< 0.25	0.24-0.33	< 0.15	< 0.12
沼气,产物7bar)					
热量消耗	No	No	55-80°C	160°C	160°C
化学品	No	No	Yes	Yes	Yes
参考来源个数	10-15	25-30	2	3	

一、有关标准与导则

农业部《生物天然气产品质量标准》《沼气提纯后进入天然气管网接网标准》《沼气提纯技术规范》

	发布		发布		" 发" 有/
XXXXX-XX	XXXX-XX-XX 实施	XXXX-XX-XX 復有	XXXX-XX-XX 实道	3003X XX XX #8	XXXX XX XX SCH
(対论稿)		Ciq	作6稿)	(458)	,
生物天然气产品质 Quality of the natural gas	量		、天然气管网接网	沼气提纯技 Technical code for longen ang	
CS XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		ICS NODOCIOXX X XX 备案号: XXXXCX-XXXXX		10130000000. 3.30. 養養者, 200033000.	

一、有关标准与导则

• 国家发改委

《中国生物天然气能源战略(十三五战略)》

《工业化生物天然气示范工程设计导则》

《生物天然气行业支持平台建设方案》

《生物天然气产业标准体系研究报告》

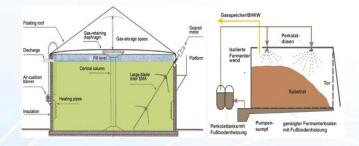
《生物天然气产品质量示范工程标准》

《沼气提纯后进入天然气管网接网示范工程标准》

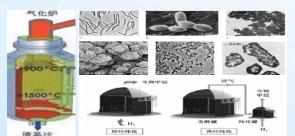
二、新农村、城镇燃气与供热工程问题

- 调峰问题
- 供暖负荷问题

• 经济性问题



对策一:产业互补


• 石油制气成套技术——工业示范

• 农林城市废弃物气、油、电和热——中试

• 煤生物制气成套技术——小试

对策二: 资本

- 技术与资本的结合
- 产业与资本的结合

• 技术转移与资本的结合

对策三: 国际交流

- 技术转移
- 国际经验

• 国际合作

谢谢

周红军教授

联系方式:

Email: zhhj63@163.com

手机: 13701071783

